## JSH: Problem solving techniques

I use modern problem solving techniques. Those techniques recognize failure as just part of the process and brainstorming is one of the most known where lots of failures are just expected.

But the modern math world is corrupted.

So posters use those failures to try and hide the successes, even when it's the factoring problem—or a proof of Fermat's Last Theorem.

There were Catholic priests who turned out to be pedophiles (and nuns). Enron collapsed dramatically. And "pure math" mathematicians lie.

The world goes on.

Now as to why they lie it's simple: math is hard.

There are too many people who are supposedly mathematicians doing valuable research in the world today.

It's just so hard to do real research in mathematics that there is no way all those people are.

There just isn't that much discovery possible for a species at our level.

So most of what they're doing is fake as you can make a living as a math professor and produce papers, and have a job where most people haven't a clue what you're doing, so they don't know it's fake.

But you have one problem: every once in a while these pesky discoverers come around who want to do REAL mathematics as if that stuff is valuable, and they have this annoying tendency to want to tell the truth about mathematical ideas!!!

So your professors came up with a system to stop them, which involves ignoring answers or insulting them a lot, like calling them insane.

Not a bad system, and I discovered how potent it is, but it has one fatal flaw: discoverers are problem solvers.

So a mathematical discoverer at a certain level would just consider their system another problem to solve and figure out a way to dismantle it.

It's a challenge. I like challenges. And I'm good at solving problems.

So I decided your group was just another challenge, another problem to solve as a measure of how good I am. Neat.

So they just gave me a challenge. That's all.

Oh yeah, they ARE fakes. From what I've seen, not much real mathematics is being done in "pure math" areas today.

Maybe in topology. I think topology is ok.